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Abstract—Sparse Mobile Crowdsensing is an emerging
paradigm for data collection with budgets and workers’ lim-
itations, which recruits workers to sense a part of spatio-
temporal data and infer what is unsensed. In order to achieve
high inferring accuracy in all spatio-temporal areas, we need
to measure the importance level of each area and sense some
important ones. Existing works usually use the average distance
or the difficulty level inferred by historical data to measure
the area’s importance. However, we argue that neither distance
nor difficulty level is suitable for measuring the importance.
A better approach is inspired by the data itself, i.e., data
similarity among different areas. Furthermore, there usually exist
multiple data types in sparse mobile crowdsensing, which leads
to a more complex inference from two-dimensional data (spatial
and temporal) to three-dimensional data (spatial, temporal, and
data type). In this paper, we study worker recruitment in a
multi-task scenario, which aims to recruit workers to sense
important data for a three-dimensional inference. Specifically, we
first present the SWDTW method to calculate data similarity,
which is used to evaluate data importance. Based on this, we
further propose an evaluation model for three-dimensional data
similarity and measure the importance of each area. Finally,
inspired by generalized greedy and simulated annealing, we
propose a worker recruitment method named WRGSA, the
target of which is selecting workers to sense important areas
to enhance the inference accuracy. Extensive experiments have
been conducted over three real-world datasets with multiple data
types, which can verify the effectiveness of our proposed methods.

Index Terms—Sparse MCS, Similarity, Multiple data type,
Worker recruitment

I. INTRODUCTION

Mobile Crowdsensing (MCS) [1] is an efficient way of
carrying out data collection, which can recruit users who are
equipped with smart devices to collect various data. It has
been widely used in many applications, including environment
monitoring [2], traffic management [3], urban monitoring [4],
etc. The common concern of the above applications focuses on
achieving high accuracy data with a limited sensing budget,
which raises Sparse MCS [5], aiming at inferring unsensed
areas using a little sensed data.

Corresponding author: Wenbin Liu.
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Fig. 1: Problem description of data inferring methods

In practice, if we manage to sense some more important
areas, then we can infer the rest of the areas with high accu-
racy. As a consequence, how to evaluate the importance level
of each area becomes an essential issue in Sparse MCS. To
evaluate such importance, some researchers [6] use the average
distance between different spatio-temporal as the information
entropy. Some other works use the difficulty level, such as
the numerical difference between sensing cycles [7], and the
variance of multiple inference algorithms [8] to measure the
inference importance. However, we argue that all of these
works are not suitable to measure the importance in some
cases. For example, as shown in Fig.1, there are 16 areas
of which three areas’ historical data are listed. The distance
between areas 1 and 2 is close while their time-varying data
is totally different. In contrast, the data of areas 1 and 3
is very similar even if these two areas are far from each
other. So when inferring area 1, the data of area 3 is more
valuable. Inspired by this phenomenon, a better way may be
using the similarity of time-varying data [9] instead of the
distance of two areas to measure the inference importance.
When evaluating the similarity, the imprecisely inferred data
may mislead the measurement of similarity, so we must take
this into account when we calculate the similarity. Therefore,
how to calculate such similarity according to the historical
data is the first challenge in this paper.

Moreover, in mobile crowdsensing, there may exist a myriad
of types of data to be collected (temperature, humidity, light,
etc), and such types of data can also be inferred from the other979-8-3503-9973-8/23/$31.00 © 2023 IEEE
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Fig. 2: Worker recruitment with similarity.

ones. However, many existing works of data importance evalu-
ation are designed either for the single data-type task scenario,
or for the multiple type scenario but only consider that tasks
are independent from each other, which ignores the inference
among different types of data. Such phenomena inspire us to
consider the importance in multiple data-type scenarios, which
makes importance evaluation more difficult because the data
inference changes from the two-dimensional data (spatial and
temporal) to three-dimensional data (spatial, temporal and data
type). Hence, how to measure such similarity and use it to
evaluate data importance in such three-dimensional data is the
second challenge which urgently needs to be solved.

Finally, even if we could decide the important areas for
data inference, we still need to select some suitable workers
to sense the corresponding data, which requires us evaluating
each worker’s importance. In practice, a worker may carry
different sensors which can collect different types of data. For
a specific crowdsensing task, limited budget, and user’s trace
coverage and the equipped sensor types make the user selec-
tion become more difficult. Based on the above consideration,
how to select a group of suitable workers is the third challenge.

To solve the three challenges above, we focus on the
data similarity under the multiple data-types scenario, and
propose a powerful method to recruit suitable workers to
sense important data for a three-dimensional inference. The
definition of our proposed problem is shown in Fig.2. The
left of Fig.2 presents the historical distribution of three types
of tasks and four workers which are equipped with specific
types of sensors waiting for recruitment. Next, we calculate
the similarities based on the historical distribution as in the mid
of Fig.2. Last, we evaluate workers’ importance according to
the similarities and workers’ performance to recruit workers.
So, our main contributions are as follows:
• We study the worker recruitment problem for multi-task

data inference in Sparse Mobile Crowdsensing. From the
perspective of data, we propose the data similarity and
SWDTW algorithm to calculate it. Considering multiple
data types, we further propose an evaluation model to
obtain the similarity-based on spatial, temporal and data-
type features. The similarity by such a model will be used
to measure data importance.

• With the data importance, we measure the workers’
utilities according to their coverage and equipped sen-
sor types. Inspired by generalized greedy and simulated
annealing, we propose a worker recruitment algorithm,
WRGSA, to select suitable workers to sense important

data for accurate inference. The effectiveness will be
demonstrated both theoretically and experimentally.

• We conduct extensive experiments on three real-world
datasets with six data types. The results verify the effec-
tiveness of our methods on improving the data inferring
accuracy under a multiple data-type scenario.

II. RELATED WORK

Sparse Mobile Crowdsensing. Mobile Crowdsensing
(MCS) [1] is an emerging method of data collection, in which
people can sense various data from different areas and time
slots by using their devices. After sensing data successfully,
they can get corresponding rewards. Now, MCS has been
profusely used in plenty of aspects of our daily life [10]–[13].
But in fact, due to the limited budget and workers, traditional
MCS could not recruit enough participants which led to only a
little data being sensed. To solve this problem, Sparse Mobile
Crowdsensing [5] is proposed. In this paradigm, we only need
to collect a little important data, then the full data is inferred
according to the sensed data. The research in Sparse MCS
is about recruiting workers [10], [14], improving inferring
accuracy [15], [16] and so on.

Data Importance. Some research uses existing data to infer
unknown data [17]–[19], but these works cannot guide us to
improve the inferring accuracy when recruiting workers or
assigning tasks. To solve this problem, some research focuses
on evaluating the data importance [6], [20]–[22], the target of
which is sensing significant areas to obtain higher inferring
accuracy. To evaluate such data importance, existing works
consider the data correlation in both spatial and temporal
features. Wang et al. [6] evaluated the correlation by using
the distance between different time slots then calculated the
data importance based on it. Wei et al. [20] used the historical
data and spatial distance to evaluate important sub-areas. But
both of their works’ disadvantage is they didn’t take the scene
which has multiple different data-types tasks into account.

Worker Recruitment. About worker recruitment, existing
works mainly concern themselves with single-task scenes
[23]–[25]. Some works [26]–[28] which are for multi-task
scenarios, mostly focus on improving the workers’ utilization
or coverage of tasks. In contrast to the above, Wang et al.
[6] applied the data importance and allocated tasks to workers
based on it. However, they did not take the correlation between
different tasks into consideration.

III. SYSTEM MODEL

A. Concepts & Definitions

Definition 1 (Datapoint) . In this paper, we divide all MCS
tasks into a set of datapoints xi, which is denoted as X . For
each datapoint xi = (mxi , txi , lxi), mxi represents the data-
type of datapoint xi, txi represents the time slot of datapoint
xi and lxi

represents the location of datapoint xi. Furthermore,
we denote the historical datapoints’ set as Xpre.

Definition 2 (Worker). The set of workers is represented
as W . For each worker ω = (pω, cω, Sω), it consists of a
reliability pω ∈ [0, 1], a price cω , and a set Sω which includes
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Fig. 3: Time series with different locations and time slots.

all datapoints it can sense. In this paper, we assume workers
are independent of each other.

Definition 3 (Similarity) Given xi and xj as two different
datapoints. The similarity is the correlation between xi and
xj , which is represented as Gi,j , and the range is [0,1].

For ease to explain the similarity, we sampled a location’s
historical data for a specified period of time (Tar.loc) with
only one data type. Moreover, we also sampled the data of
same period of time but different locations (Diff.loc) and the
data of same location but different times (Diff.time) in Fig.3.
Similarity is such an absolute criterion [9] to derive statistical
inferences about the relationship between datapoints based on
data and phase difference.

Definition 4 (Reliability [29]) When recruiting workers,
because of the independence among them, the reliability of xi
is given by:

rel (xi,Wxi
) = 1−

∏
∀ωj∈Wxi

(
1− pωj

)
(1)

where Wxi is a set of recruited workers. For example, when
worker ω ∈ ε, where ε is the recruited workers set, it will be
added in Wxi

if xi ∈ Sω .
Definition 5 (Interpolation Error Ratio [30]) Interpola-

tion Error Ratio is the error ratio of inferring a missing value
from a discrete set of known values by using inverse distance
interpolation. For each datapoint xi, its interpolation error ratio
is expressed as err (xi). When xi is selected, err (xi) = 0.

Definition 6 (Knowledge Ratio) Knowledge Ratio is rep-
resented as the knowledge of xi for inferring. In our paper, the
knowledge ratio of the whole crowdsensing tasks equals 1 if all
datapoints are sensed. For each datapoint xi, the knowledge
ratio is at most 1

|X| . For ease of expression, we denote the
knowledge ratio of xi as kri. The formula is shown as:

kri =
1

|X|
(1− err (xi)) (2)

Definition 7 (Data Quality [6]) For X which is a set of
datapoints, the data quality, denoted by Q(X), is defined as:

Q(X) = −
∑
∀i∈X

kri log2 kri (3)

For ease of expression, when we consider the workers,
Q(X|ε) is the data quality based on the recruited workers ε,

which is used to evaluate the importance of workers. Besides,
as [6] have proven, Eq.(3) is submodular and non-decreasing.

B. Problem Formulation

In this paper, we mainly study two aspects in Sparse MCS,
the one is data importance in three-dimension and the other is
applying the data importance to recruit workers. For evaluating
such importance, in our method, we need to calculate the sim-
ilarities between datapoints. Distinctly from only considering
spatial and temporal dimensions, our method will combine
similarities in three dimensions which is calculated as follows:

Gi,j = α · Gmxi
,mxj

+ β · Gtxi
,txj

+ γ · Glxi
,lxj

(4)

where Gmxi
,mxj

, Gtxi
,txj

, Glxi
,lxj

represent the similarity
between the data types of xi and xj , the similarity between
the time slots of xi and xj , and the similarity between
the locations of xi and xj , respectively. Since in different
situations, the weights is not equal for such three dimension
similarities, we denote α, β, γ as such weights and they satisfy
α+β+γ = 1. Based on the similarity and the selected points
ζ, we evaluate the importance by data quality Q(X|ζ).

In the worker recruitment stage, the scenario is more
complex in that the workers may not be able to complete the
task. For instance, some workers may reject the task, finish
the task incorrectly, or fail to complete the task within the
stipulated time constraint. Considering the above situation,
[29] supposes each worker has a probability that it can
successfully finish given tasks. Accordingly, we formulate the
worker as ω = (pω, cω, Sω). So, we evaluate the importance
of workers by the above similarity and recruit a group of
them ε . Each recruited worker collects all of its datapoints
with each reliability. The cost of recruited workers is given as
c(ε) =

∑
∀ωi∈ε cωi

. Our goal is to maximize the data quality
under the following the budget constraint which is denoted as
B, and the formula is:

maximize Q(X|ε)
sub. c(ε) ≤ B

(5)

IV. DATAPOINT IMPORTANCE EVALUATION

A. Data Based Similarity Algorithm

Firstly, we study a simple case where we only consider a
single data-type scenario at the current time, so we only need
to evaluate the similarities between various locations based
on historical data. As far as we know, there exist some related
works on evaluating similarities between time series according
to historical data. In our problem, we can change such similar-
ities between locations as the similarity between time series.
Donald et al. propose an algorithm named DTW (Dynamic
Time Warping) [31]. DTW is a powerful measurement for
calculating the similarity between different historical data [32].
It can evaluate the relative distance between two historical
datapoints considering the phase and value difference.

Fig.4 illustrates the process of DTW in our problem. We
have two locations A and B with their historical data, which
are A = a1, a2, a3, ..., aN , B = b1, b2, b3, ..., bN , where N is
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Fig. 4: An example of DTW and Euclidean distance

the length of A and B. For ease of expression, the data and
corresponding datapoints have the same meaning. In Fig.4, we
construct an N×N matrix which is called the distance matrix.
The point (n1, n2) in this matrix means the distance disn1,n2

between an1
and bn2

. In DTW, such a distance is the Euclidean
Distance. Next, we set Υn1,n2 as the cumulative distance from
(1, 1) to (n1, n2), DTW aims to find a path from (1, 1) to
(N,N) which is the minimum of the cumulative distance as
the distance standard between two series. Inspired by dynamic
programming, Υn1,n2

can be calculated as:

Υn1,n2 = disn1,n2 +min{Υm,n−1,Υm−1,n,Υm−1,n−1} (6)

The solution of DTW and Euclidean Distance is also shown in
the right of Fig.4. As we can see, distinctly from the Euclidean
Distance, DTW can calculate the similarity by taking data
and phase difference into account. This is why DTW is more
popular as a standard to measure time series similarity.

However, the traditional DTW has a disadvantage that it
ignores the different time weights when finding such a path,
which may lead to miscalculation and cause a terrible measure
of similarity [33]. Moreover, in Sparse MCS, we can’t promise
all of the data can be sensed or precisely inferred, which means
the WDTW can’t be solved. So, in this subsection, we propose
our method based on WDTW, which is named Similarity-
Weighted Dynamic Time Warping (SWDTW). The details
are shown in Algorithm 1. First, considering the inferring
accuracy in Sparse MCS, we set the interpolation error ratio
sequences of A as ERRA = err(a1), err(a2), ..., err(aN )
and B’s as ERRB = err(b1), err(b2), ..., err(bN ). Similarly
to the traditional DTW, we also need to calculate the distance
matrix. Inspired by [33], in SWDTW, disn1,n2 is calculated
as follows:

disn1,n2
=

2− (1− err(an1))(1− err(bn2))

1 + exp(−g|n1 − n2| −N/2)
× (an1

− bn2
)2

(7)
where g is a constant. Based on the above, the Υn1,n2 can

be calculated by Eq.(6). The correlative distance between A
and B, which is denoted as ΦA,B , is ΥN,N .

The SWDTW can evaluate similarity considering the in-
ferred historical data. It also prevents the same drawback of

Algorithm 1 Similarity-Weighted Dynamic Time Warping

Input: A,B, n
Output: ans : The relative distance between A and B

1: for each an1
∈ A do

2: for each bn2
∈ B do

3: Calculate disn1,n2
by Eq.(7)

4: end for
5: end for
6: path1,1 ← 0
7: for each an1

∈ A do
8: for each bn2

∈ B do
9: Calculate Υi,j by Eq.(6)

10: end for
11: end for
12: ans← Υ(N,N)

DTW, which may lead to infeasible calculations. Next, in this
subsection, we can obtain the largest Φ between datapoints as
the benchmark. Then we define the similarity between point i
and j as follows:

Gi,j = 1− Φi,j
maxa,b∈X Φa,b

(8)

B. Similarity in three dimensions

In this subsection, based on the single data-type scenario,
we consider the similarity in three dimensions. To solve the
first question, firstly, we set M = {mxi

|xi ∈ X} as a set of
all data types in X , T = {txi

|xi ∈ X} as a set of all time
slots in X and L = {lxi

|xi ∈ X} as a set of locations.
Then, we represent mi as the element in M , ti as the

element in T and li as the element in L respectively. Because
we calculate such similarities based on historical data, we
make the following assumptions: we set M∗, T ∗, L∗ as the
same set in Xpre, and assume that M∗ = M,L∗ = L.

For ease of explanation, we calculate the similarity between
different data types as an example. To solve the problem of
data-type differences (e.g., temperature, humidity, and volt-
age), we need to normalize the historical data for each data
type as per d̃xi =

dxi
−µ
σ , where the µ is the average and σ is

the standard deviation of historical data in the same data type.
Then, we calculate the similarity between different data

types. First, we need to choose corresponding data by con-
trolling dimension. For example, when we want to calculate
the Gmi,mj

, the corresponding historical datasets are repre-
sented as Dmi

= {d̃xi
|x ∈ Xpre and mx = mi} and

Dmj
= {d̃xi

|x ∈ Xpre and mx = mj}.
Then, we get two series from Dmi and Dmj in the same

order. We calculate each pair’s correlative distance of (mi,mj)
as Φmi,mj

by SWDTW, thus the similarity of data-type
dimension is shown below:

Gmi,mj = 1−
Φmi,mj

maxi,j∈M∗ Φi,j
(9)

Similarly to the above method, we calculate Φli,lj from
Dli = {d̃xi |x ∈ Xpre and lx = li} and Dlj = {d̃xi |x ∈



Xpre and lx = lj} , and then we calculate the similarity of
spatial dimension as below:

Gli,lj = 1−
Φli,lj

maxi,j∈L∗ Φi,j
(10)

In contrast to other dimensions, the temporal dimension is
linear, so we can only calculate the past similarity of time slots.
Because of the cyclic nature of time slots, we set the cycle
length of time slots to be c, and then we set the corresponding
time ti

′ = ti − c, tj ′ = tj − c. Thus we can calculate the
similarity between ti′ and tj ′ from Φti′,tj ′ using Dti′ and Dtj ′

as the similarity of ti and tj . So, the similarity of temporal
dimension is formulated as:

Gti,tj = 1−
Φti′,tj ′

maxi,j∈T∗ Φi,j
(11)

Finally, we determine the weight α, β, γ by entropy [34],
[35]. We set DG as a set including all dimensions’ similarities.
Then, we normalize each similarity as follows:

Ĝi,j =
Gi,j −minG∈DG G

maxG∈DG G −minG∈DG G
(12)

For each dimension (time slots, locations, or data types), we
calculate the similarities’ probability in each dimension. For
example, if we want to calculate the probabilities for pairs of
data types, then we obtain the psimi,j,M as:

psimi,j,M =
Ĝmi,mj∑

i,j∈M Ĝmi,mj

(13)

Next, take data types’ dimension as an example. We calcu-
late the entropy of it, which is represented as EM . The formula
can be represented as:

EM = − 1

lnK

K∑
k=1

psimi,j,M ln psimi,j,M (14)

where K is the pairs’ size in M . Similarly to Eq.(14), we
can also calculate the entropy of time slots dimension ET and
locations dimension EL. Lastly, we calculate the value of three
dimensions’ weights α, β, γ as follows:

α = 1−EM

3−(EM+EL+ET )

β = 1−ET

3−(EM+EL+ET )

γ = 1−EL

3−(EM+EL+ET )

(15)

Thus, the three-dimensional similarity is calculated by Eq.4.

C. Datapoint Importance Evaluation

In this subsection, we evaluate the data importance by using
the similarity. Firstly, we modify the formula from [6] to
express the interpolation error ratio as:

err (xi) =

∑
j∈Sk(xi)

(1− Gi,j)
k

(16)

where Sk (xi) is a function to obtain a set of k selected
datapoints with the largest similarities. As shown in Eq.(16),
we select k largest similarities datapoints which belong to

selected datapoints ζ. Then, we set Q(X|ζ) as the data quality
based on ζ. The data quality can be calculated by Eq.(2) and
Eq.(3) in that the datapoints’ costs defined in this section are
the same. For x ∈ X − ζ, we can obtain the data quality
variation 4x when x is selected as:

4x = Q(X|ζ + x)−Q(X|ζ) (17)

Such variation is the importance of x with ζ. So, we can
select important datapoints before sensing them.

V. WORKER RECRUITMENT

In this section, we consider that the workers may not be
trustworthy. According to [29], we define that each worker
ω has its reliability pω . Distinctly from only considering the
datapoints, the worker recruitment mainly aims at obtaining
the recruited worker set ε to maximize the data quality with
the budget limitation. Before solving it, we need to prove that
it is NP-hard by Theorem. 1.

Theorem 1. The worker recruitment problem is NP-hard.

Proof. First, we consider a simple case. A worker can only
collect one datapoint in X with a single cost and 100%
reliability. In this assumption, the worker recruitment problem
is the same as the datapoint selection problem, which belongs
to a subset selection problem, which is NP-hard. Consequently,
further considering the different costs and reliability between
workers, the worker recruitment problem is NP-hard.

A. Preparation before Worker Recruitment

Based on the datapoint similarity described above, we now
face a situation where each datapoint j has a reliability
probability rel(j,Wj) due to the unstable workers. Aiming at
successfully gathering data from a datapoint with rel(j,Wj),
we need to construct our worker recruitment strategy after
calculating the data quality that the worker acquires. In order
to calculate the data quality, we first define a relative distance
between datapoints with reliability as:

d′i,j = (1− Gi, j) · (1− rel(j,Wj)) (18)

In Eq.(18), i is the origin datapoint, j is the destination. In
such case, we set di,j ′ = 1 as the maximal distance. Such a
relative distance represents the data inferring error of i from
j. Then, let S′k(xi) be a set of k datapoints with the smallest
relative distance. Thus, we can represent the err(xi) as:

err (xi) =

∑
j∈S′k(xi)

d′i,j

k
(19)

According to Eq.(19), inspired by [6], the knowledge ratio’s
formula can be modified from Eq.(2) as:

kri =
1

|X|

(∑
j∈S′k(xi)

rel (j,Wj)

k
− err (xi)

)
(20)

Finally, we represent data quality as Q(X|ε), which means
the data quality under the recruited worker set ε. In this way,
we can extend the datapoint importance evaluation to evaluate



Algorithm 2 Worker Recruitment by Generalized Greedy

Input: B,W,X
Output: ε : The set of recruited workers

R∗ = {rel(x1,Wx1
), rel(x2,Wx2

), ..., rel(xn,Wxn
)}:

The reliabilities of all data points
1: ε← ∅, cost← 0
2: while cost <= B do
3: for ωi ∈W − ε and cost+ cωi ≤ B do
4: compute Q(X|ε+ωi)−Q(X|ε)

cωi
as ∆ωi

5: end for
6: ω̂ = arg max {∆ω : ω ∈W − ε}
7: add ω̂ in ε
8: cost← cost+ cω̂
9: calculate R

10: end while

the contribution of each worker ω ∈ W − ε with existing
recruited workers set ε, which is represented as:

∆ω =
Q(X|ε+ ω)−Q(X|ε)

cω
(21)

B. Submodular Recruitment Strategy

Next, we study the algorithm for recruiting workers based
on the importance evaluation of the workers. As the proof
of Theorem. 1, the problem can be seen as a subset selec-
tion problem and Eq.(3) is a submodular and non-decreasing
function. The state-of-the-art strategy for such a problem is a
generalized version of the greedy algorithm [36]. So, in this
subsection, we recruit workers by selecting the workers with
max Q(X|ε). In order to maximize Q(X|ε), we set ∆ωi as
the heuristic value of worker ωi. Based on this, the detail of
the greedy process is shown in Algorithm 2. In each iteration,
it enumerates all unselected workers and chooses the worker
with highest ∆ωi

. The algorithm will be teminated until all of
the budget is spent.

C. Modified Strategy

Although the greedy algorithm is a powerful approach to
solve this problem, it also has disadvantages because the fixed
strategy may lead to a local optimum. In order to avoid it,
we propose our method inspired by simulated annealing [37],
which is called Worker Recruitment by Greedy heuristic
Simulated Annealing (WRGSA).

Algorithm 3 is the detail of WRGSA, we initiate the
candidate worker recruit set ε∗ by Algorithm 2. The target
of this step is getting a relatively good result to speed up the
cold boot of our algorithm. In each cycle, we generate a new
result ε′ from the candidate ε∗ using Algorithm 4. Next, we
compare data quality between the two solutions ε∗ and ε′. If
ε′ is better, we will choose ε′ as the new candidate recruited
worker set. In contrast, if the candidate set ε∗ is better, ε′ will
be selected as the new candidate recruited worker set with
probability Jε∗,ε′ = exp(−(Q(X|ε∗)−Q(X|ε′))

T ).

Algorithm 3 WRGSA

Input: B,W,X, T, Tmax,α;
Output: ε : the set of recruited workers

R = {rel(x1,Wx1
), rel(x2,Wx2

), ..., rel(xn,Wxn
)}: the

reliabilities of all datapoints
1: Initialize ε∗ by algorithm 2
2: while stop condition not met do
3: generate a new solution ε′ from ε∗ by Algorithm 4
4: if Q(X|ε′) > Q(X|ε∗) then
5: ε∗ ← ε′

6: else
7: ε∗ ← ε′ with probability Jε∗,ε′
8: end if
9: if Q(X|ε∗) > Q(X|ε) then

10: ε← ε∗, Tb ← T
11: calculate R according Eq.(1)
12: end if
13: T ← α× T
14: if T < 0.01 then
15: Tb ← 2× Tb, T ← min {Tb, Tmax}
16: end if
17: end while

Finally, we update the ε, which is the answer set by our
algorithm, and temperature parameters. The detail is shown in
Algorithm 3. In addition, for generating a new ε, Algorithm
4 includes two components: one is removing workers from ε
and the other is inserting new workers into ε. The specific
explanation is as follows.

Removal method: In this part, we choose probability
removal to remove workers. For worker ω, we calculate its
profit as ∆ω = Q(X|ε∗−ω)−Q(X|ε∗)

cω
. We denote Smin =

{(ω,∆ω)|ω ∈ ε′} as the set of each selected group of workers
in ε and its profits, and then we sort all the elements in Smin in
ascending order according to the profit ∆ω of each element.
Next, we set removal probability Pi = 2−i of each worker
ω in ε′, where i is the rank of worker ω in Smin. Besides,
to prevent duplicate selection of removed workers, let L be
a set including removed workers. It will be initialized to be
empty before removing starts, and the workers in L will not
be selected during this execution of it. The details of it are
shown in Algorithm 4.

Greedy Insertion: In order to update the workers after
removing workers by probability, we recruit some workers to
generate a new group of best workers. Similarly to Algorithm
2, we choose workers’ set W ⊆ W − ε′ − L by greedy (the
greedy heuristic value is same as Eq.(21)), and then add them
in ε. The detail of it can also be seen in Algorithm 4.

Stop Condition: In this paper, we suppose it is meaningless
when the algorithm can’t find a better solution after a given N
iterations. So, if our algorithm can’t find an ε with higher data
quality in the given iterations, the algorithm will be stopped.

Next, we analyze the time complexity of WRGSA. Firstly,
for calculating the data quality, the time complexity of calcu-
lating data quality is O(|X|2log(|X|)). For Algorithm 4, we



Algorithm 4 Generate New Solution

Input: B,W,X, cost
R: the reliabilities of all Data
ε∗: a set of already recruited workers

Output: ε′ : the new set of recruited workers
1: ε′ ← ε∗, Smin ← ∅,L ← ∅
2: for each ωi ∈ ε∗ do
3: compute Q(X|ε′−ωi)−Q(X|ε′)

cωi
as ∆ωi

4: Smin ← Smin ∪ (ωi,∆ωi
)

5: end for
6: sort Smin by ascending order of ∆ω

7: for each ω ∈ Smin with its rank i do
8: if ω is removed with Pi then
9: ε′ ← ε′ − ω, cost← cost+ cω

10: add ω in L
11: end if
12: end for
13: Select workers W from ⊆W − ε′ − L by greedy
14: Add W in ε

set cmin = min{cω|ω ∈W} as the minimum cost in workers.
So, its complexity is at most O( B

cmin
|W |). Because of the

stop condition, the complexity of WRGSA is O(N · B
cmin
|W |).

Combining the data quality, the total time complexity is
O(N · B

cmin
|W ||X|2log(|X|)). Finally, we analyze the feasi-

bility of WRGSA. As mentioned above, we utilize the greedy
strategy for heuristic search. In the worst case, the effect of
WRGSA is the same as generalized greedy, which can be
proven as Q(X|ε) ≥ (1/2)(1−1/e) ·Q(X|εmax) [38], where
εmax is the optimal solution for recruiting workers.

VI. EXPERIMENT

In order to show the effectiveness of our proposed methods,
we construct our experiments in two aspects. One aims to find
out datapoints which are important for data inference; the other
is recruiting a proper group of workers within the budget. All
of our experiments use real datasets and we use Weighted k-
Nearest Neighbor(WkNN) to infer unsensed data, by which
it is easier to express the relationship between datapoints. For
each unsensed datapoint x, in weighted kNN, the ground truth
and inferred data is denoted as dx and d̂x, Sk(x) is a set of k
sensed datapoints with the largest similarities. In this section,
we set k = 3 as default.

To infer an unsensed datapoint, firstly, we need to obtain the
sum of k highest similarities from sensed datapoints, which
we set as Λx, the formula is Λx =

∑
y∈Sk(x) Gx,y

Based on this, in this paper, all unsensed data is calculated
by those sensed datapoints which are the most k-similar to it
and its’ corresponding weight. So, the data of the unsensed
datapoint x can be inferred as d̂x =

∑
y∈Sk(x) dy ×

Gx,y

Λx
.

Last, we choose RMSE, which is
√

1
|X|
∑
i∈X(di − d̂i)2, to

evaluate the accuracy of inference.
The last aspect of attention is how much data needs to be

collected in advance. In this section, data with a cycle length of

time slots, which is mentioned in Section IV, will be collected
for initial similarity evaluation.

A. Dataset

The datasets we use include outdoor environmental moni-
toring data (PM, TH) and indoor environment data (LVTH)1.
Specifically, as the outdoor datasets, PM collected PM2.5 and
PM10 data from 36 subareas within an hour in Beijing. A total
of 264 time slots were collected. TH obtained temperature
and humidity data from 57 subareas within half an hour in
the EPFL campus. The total number of time slots is 336.
In the indoor dataset LVTH, four kinds of data (humidity,
temperature, light and voltage data) were collected from 54
sensors in the Intel Berkeley Research Lab between February
28th and April 5th, 2004. Because of the data defection in
some locations and time slots in the dataset, we selected a
part of the data from the dataset and reconstructed this dataset
as collecting four such data types from 33 subareas within half
an hour and with a total of 384 time slots data were collected.
Note that our proposed data-driven method aims to exploit
the correlations between different tasks from the perspective
of data similarity. So, our method is effective for multi-tasks
that are intrinsically related in most cases.

B. Datapoint Selection

For datapoint selection experiments, we set each datapoint
in datasets with the same cost and we assume each datapoint
can be collected successfully. In conclusion, we only consider
the efficiency with a given sensed ratio. In this setting, the
choosing algorithm in these experiments is evaluating each
datapoint’s importance like in Section IV, and is sensing
them by the greedy method. The greedy method is selecting
the datapoints with the biggest Eq.(17). This means that this
experiment is only intended to express the performance of the
data quality method proposed in this paper.

Firstly, we compare the performance of other data quality
methods on our datasets. The methods’ details in these exper-
iments are as follows:
• DIS: This method comes from [6], and it uses the spatio-

temporal distance as the standard of datapoints’ similarity.
• DTW: This method is the DTW algorithm proposed by

[31] to evaluate the similarity according historical data.
• SWDTW: This uses the method proposed in our paper.
Moreover, in order to show the importance of our similarity

model, we also use two methods that do not consider the
similarity in the data-types dimension, called DTW ST and
SWDTW ST. In addition, in Eq.7, the constant g in dataset
PM, HT and LVTH is set to be 0.25, 0.4 and 0.6 respectively.

For outdoor datasets, the result of PM is shown in Fig.5(a)-
(b) and the TH’s is Fig.5(c)-(d). Distinctly from PM, the results
of DTW ST and SWDTW ST are too high in HT, so we
represent the results without these two methods. Lastly, the
results of LVTH are contained in Fig.6.

1http://db.csail.mit.edu/labdata/labdata.html
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Fig. 5: The inferring accuracy under different sensed ratios in PM&HT.
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Fig. 6: The inferring accuracy under different sensed ratios in LVTH.

As we can see, as the sensed ratio increases, the value of
RMSE decreases in general for each algorithm, since more
sensing data can provide more similar datapoints to improve
the accuracy of inference. In these experiments, the RMSE by
using DTW is lower than DIS. This phenomenon told us the
proposed similarity by historical data can improve the accuracy
compared to just using spatio-temporal distance. On the other
hand, the performance of DTW ST and SWDTW ST are
unstable in the experiments, and both of them are the worst al-
gorithms in most cases. This shows that the three-dimensional
data similarity model in our paper is essential. The last
phenomenon in this experiment is that the SWDTW performs
better than DTW. It shows that the similarity algorithm in our
paper is better than the traditional DTW.

C. Worker Recruitment

In this subsection, we verify the effect of WRGSA, which
is proposed in Section V-C. Similarly to choosing a datapoint,
the effect of the worker recruitment algorithm is measured
by whether the algorithm can recruit a set of workers which
can achieve a lower RMSE within the same budget and the
same set of all workers. In addition, we evaluate the similarity
in our paper with g = 0.25 and N = 10 in this subsection,
and the workers’ parameters are generated randomly according
the datasets. In the first experiment, we evaluate our methods
within a stable budget but gradually increase the workers. And
we choose three methods as the baseline methods. The details
of each method are shown below:

• DIS Random: This method evaluates the similarity by
spatio-temporal distance and selects workers randomly.

• DIS Greedy: This method is proposed in [6], it evalu-
ates the similarity by spatio-temporal distance and then
utilizes the entropy to select workers greedily.

• SIM Random: This method uses the similarity evalua-
tion in Section IV but selects workers randomly.

• SIM WRGSA: This method uses the similarity evalua-
tion in Section IV and applies it by using WRGSA to
recruit a group of workers.

The results of the outdoor datasets are shown in Fig.7(a)-
(d), and the fitting of our algorithm’s performance is shown
in Fig.7(e). The indoor dataset’s results are shown in Fig.8(a)-
(d). Like in Fig.7(e), the fitting performance is also shown in
Fig.8(e). Because of the limit of the budget, with a higher
number of workers, the RMSE will decrease but tend to
stabilize in a range. Moreover, as shown in the figures, the
SIM Random is better than DIS Random. Therefore, we can
conclude that in worker recruitment, the similarity proposed
by our paper is also useful for inference. This phenomenon
further proves the insight that our model is better than spatio-
temporal distance in Sparse MCS. Furthermore, compared to
other methods, the SIM WRGSA performs much better than
other algorithms. These phenomena indicate that our worker
recruitment method with the similarity evaluation in this paper
is more effective than other methods.

Apart from this experiment, we also compare our worker
selection algorithm with other existing subset selection algo-
rithms with stable workers but an increasing budget. In this
experiment, the similarity evaluation is the same model which
was proposed in our paper. We choose two published methods
to verify the effectiveness of our algorithm. The algorithms’
details are shown as follows:
• WRGSA: This is the algorithm in our paper.
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Fig. 7: The inferring accuracy with different numbers of workers in PM&HT.
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Fig. 8: The inferring accuracy with different numbers of workers in LVTH.
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Fig. 9: The inferring accuracy under different budget constraints in PM&HT.
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Fig. 10: The inferring accuracy under different budget constraints in LVTH.

• EAMC: This is the modified genetic method which is
proposed by [36]. This algorithm has been proven as a
powerful subset selection algorithm.

• IGA: This is the immune genetic algorithm which is
modified by [39], which has been published to solve
multi-task allocation problem in MCS.

The results of this experiment are shown in Fig.9(a)-(d),
and Fig.10(a)-(d) and we also show the fitting of WRGSA’s
performance in Fig.9(e) and Fig.10(e). As can be seen, because
of the increasing budget, we can recruit more workers to
sense data, which reduces the RMSE. More importantly, our
method also can perform better than other algorithms. This
phenomenon also proves the WRGSA’s effectiveness.

VII. CONCLUSION

In this paper, we propose a model to calculate the similarity
of different datapoints in practical Sparse MCS with three-
dimensional data, such similarity is a standard for data impor-
tance evaluation. The model includes two components. One is
SWDTW, which calculates the similarity between time series,
which can provide a more comprehensive assessment in Sparse
MCS. The other component is three dimensional similarity
between data points. Finally, we apply our model to worker re-
cruitment. Considering the reliability and the equipped sensor
type of workers, we propose WRGSA for recruiting a group
of workers. We conducted extensive experiments on three real-
world datasets. The results of the experiments prove that our



methods can select important datapoints and recruit workers
to improve the inferring accuracy.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, 2011.

[2] D. Zhang, L. Wang, H. Xiong, and B. Guo, “4w1h in mobile crowd
sensing,” IEEE Communications Magazine, vol. 52, no. 8, pp. 42–48,
2014.

[3] Z. Liu, S. Jiang, P. Zhou, and M. Li, “A participatory urban traffic
monitoring system: The power of bus riders,” IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 10, pp. 2851–2864, 2017.

[4] H. Aly, A. Basalamah, and M. Youssef, “Automatic rich map semantics
identification through smartphone-based crowd-sensing,” IEEE Transac-
tions on Mobile Computing, vol. 16, no. 10, pp. 2712–2725, 2017.

[5] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: challenges and opportunities,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 161–167, 2016.

[6] T. Wang, X. Xie, X. Cao, T. B. Pedersen, Y. Wang, and M. Xiao, “On
efficient and scalable time-continuous spatial crowdsourcing,” in 2021
IEEE 37th International Conference on Data Engineering (ICDE), 2021,
pp. 1212–1223.

[7] S. He and K. G. Shin, “Steering crowdsourced signal map construction
via bayesian compressive sensing,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 1016–1024.

[8] L. Wang, D. Zhang, D. Yang, A. Pathak, C. Chen, X. Han, H. Xiong, and
Y. Wang, “Space-ta: Cost-effective task allocation exploiting intradata
and interdata correlations in sparse crowdsensing,” Acm Transactions on
Intelligent Systems & Technology, 2018.

[9] S. Lhermitte, J. Verbesselt, W. Verstraeten, and P. Coppin, “A
comparison of time series similarity measures for classification
and change detection of ecosystem dynamics,” Remote Sensing of
Environment, vol. 115, no. 12, pp. 3129–3152, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0034425711002446

[10] D. Coskun, O. D. Incel, and A. Ozgovde, “Phone position/placement
detection using accelerometer: Impact on activity recognition,” in IEEE
Tenth International Conference on Intelligent Sensors, 2015.

[11] M. Gustarini, K. Wac, and A. K. Dey, “Anonymous smartphone data
collection: factors influencing the users’ acceptance in mobile crowd
sensing,” Personal and Ubiquitous Computing, vol. 20, no. 1, pp. 65–
82, 2015.

[12] K. Lou, S. Li, F. Yang, and X. Zhang, “Advertising strategy for
maximizing profit using crowdsensing trajectory data,” in International
Symposium on Security and Privacy in Social Networks and Big Data,
2020.

[13] J. Wang, Y. Wang, D. Zhang, L. Wang, C. Chen, J. W. Lee, and
Y. He, “Real-time and generic queue time estimation based on mobile
crowdsensing,” Frontiers of Computer Science, 2017.

[14] T. Kandappu, A. Misra, S. F. Cheng, N. Jaiman, R. Tandriansyah,
C. Chen, H. C. Lau, D. Chander, and K. Dasgupta, “Campus-scale
mobile crowd-tasking: Deployment & behavioral insights,” in Acm Con-
ference on Computer-supported Cooperative Work & Social Computing,
2016, pp. 798–810.

[15] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Cheng, “Truth
discovery on crowd sensing of correlated entities,” in Acm Conference
on Embedded Networked Sensor Systems, 2015, pp. 169–182.

[16] X. Qiang and Z. Rong, “When data acquisition meets data analytics:
A distributed active learning framework for optimal budgeted mobile
crowdsensing,” in INFOCOM, 2017.

[17] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, and D. Zhang, “Active
sparse mobile crowd sensing based on matrix completion,” in the 2019
International Conference, 2019.

[18] K. Xie, J. Tian, G. Xie, G. Zhang, and D. Zhang, “Low cost sparse
network monitoring based on block matrix completion,” in IEEE INFO-
COM 2021 - IEEE Conference on Computer Communications, 2021.

[19] E. Wang, M. Zhang, X. Cheng, Y. Yang, and J. Zhang, “Deep learning-
enabled sparse industrial crowdsensing and prediction,” IEEE Transac-
tions on Industrial Informatics, vol. PP, no. 99, pp. 1–1, 2020.

[20] X. Wei, Z. Li, Y. Liu, S. Gao, and H. Yue, “Sdlsc-ta: Subarea division
learning based task allocation in sparse mobile crowdsensing,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1344–
1358, 2021.

[21] P. Sun, Z. Wang, L. Wu, H. Shao, H. Qi, and Z. Wang, “Trustworthy and
cost-effective cell selection for sparse mobile crowdsensing systems,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 6108–
6121, 2021.

[22] Z. Zhu, B. Chen, W. Liu, and Z. Yong, “A cost-quality beneficial cell
selection approach for sparse mobile crowdsensing with diverse sensing
costs,” IEEE Internet of Things Journal, vol. PP, no. 99, 2020.

[23] W. Liu, Y. Yang, E. Wang, and J. Wu, “User recruitment for enhancing
data inference accuracy in sparse mobile crowdsensing,” IEEE Internet
of Things Journal, vol. 7, no. 3, pp. 1802–1814, 2020.

[24] H. Xiong, D. Zhang, L. Wang, and G. Chen, “Crowdrecruiter: Selecting
participants for piggyback crowdsensing under probabilistic coverage
constraint,” in ACM International Joint Conference on Pervasive and
Ubiquitous Computing, 2014.

[25] F. Li, J. Zhao, D. Yu, X. Cheng, and W. Lv, “Harnessing con-
text for budget-limited crowdsensing with massive uncertain workers,”
IEEE/ACM Transactions on Networking, vol. 30, no. 5, pp. 2231–2245,
2022.

[26] X. Li and X. Zhang, “Multi-task allocation under time constraints
in mobile crowdsensing,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1494–1510, 2021.

[27] J. Zhang and X. Zhang, “Multi-task allocation in mobile crowd sensing
with mobility prediction,” IEEE Transactions on Mobile Computing, pp.
1–1, 2021.

[28] L. Wang, Z. Yu, D. Zhang, B. Guo, and C. H. Liu, “Heterogeneous
multi-task assignment in mobile crowdsensing using spatiotemporal
correlation,” IEEE Transactions on Mobile Computing, vol. 18, no. 1,
pp. 84–97, 2019.

[29] P. Cheng, X. Lian, Z. Chen, L. Chen, and J. Zhao, “Reliable diversity-
based spatial crowdsourcing by moving workers,” Proceedings of the
VLDB Endowment, 2014.

[30] J. Gao and P. Revesz, “Voting prediction using new spatiotemporal
interpolation methods,” in Proceedings of the 2006 International
Conference on Digital Government Research, ser. dg.o ’06. Digital
Government Society of North America, 2006, p. 293–300. [Online].
Available: https://doi.org/10.1145/1146598.1146678

[31] D. J. Berndt and J. Clifford, “Using dynamic time warping to find pat-
terns in time series,” in Proceedings of the 3rd International Conference
on Knowledge Discovery and Data Mining, ser. AAAIWS’94. AAAI
Press, 1994, p. 359–370.

[32] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: Experimental comparison
of representations and distance measures,” Proc. VLDB Endow.,
vol. 1, no. 2, p. 1542–1552, aug 2008. [Online]. Available:
https://doi.org/10.14778/1454159.1454226

[33] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu,
“Weighted dynamic time warping for time series classification,”
Pattern Recognition, vol. 44, no. 9, pp. 2231–2240, 2011,
computer Analysis of Images and Patterns. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S003132031000484X

[34] Z. hong ZOU, Y. YUN, and J. nan SUN, “Entropy method for
determination of weight of evaluating indicators in fuzzy synthetic
evaluation for water quality assessment,” Journal of Environmental
Sciences, vol. 18, no. 5, pp. 1020–1023, 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1001074206600326

[35] L. Liu, J. Zhou, X. An, Y. Zhang, and L. Yang, “Using fuzzy
theory and information entropy for water quality assessment in
three gorges region, china,” Expert Systems with Applications,
vol. 37, no. 3, pp. 2517–2521, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417409007817

[36] C. Bian, C. Feng, C. Qian, and Y. Yu, “An efficient evolutionary
algorithm for subset selection with general cost constraints,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 4, pp.
3267–3274, 2020.

[37] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and random-
ized optimization for the join ordering problem,” Vldb Journal, vol. 6,
no. 3, pp. 191–208, 1997.

[38] C. Qian, J.-C. Shi, Y. Yu, and K. Tang, “On subset selection with general
cost constraints,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 2613–2619.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/364

[39] X. Li and X. Zhang, “Multi-task allocation under time constraints
in mobile crowdsensing,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1494–1510, 2021.


